

After completing this lesson you will understand about:

 The basics of defining, declaring, initializing and using arrays.
 Passing indexed variables and entire as arguments to functions.
 The arrays of classes and classes with arrays as member

variables.
 The basics of multidimensional arrays, multidimensional array

parameters and passing them into functions.
 The string basics, declaring and initializing cstring variables,

predefined cstring functions and getline function.
 Defining cstring functions and array of strings.

7.1 Introduction to arrays
7.2 Arrays in functions

 7.2.1 Indexed variables as function arguments
 7.2.1 Passing entire arrays as function arguments

7.3 Arrays and classes
 7.4 Multidimensional arrays
 7.4.1 Accessing multidimensional arrays
 7.4.2 Initialization of Multidimensional arrays
 7.4.3 Storage of two dimensional arrays
 7.4.4 Passing multidimensional arrays into functions
 7.5 Strings
 7.5.1 Index variables of cstrings
 7.5.2 Operations on cstrings
 7.5.3 cstring predefined functions
 7.5.4 Defining cstring functions

7.5.5 Arrays of strings
 7.6 C++ Standard string class
 7.7 Summary
 7.8 Technical Terms
 7.9 Model questions
 7.10 References

Lesson 7:Arrays and Strings

Objectives

SSttrruuccttuurree OOff TThhee LLeessssoonn

An array is a group of related data items of same data type that share a
common name. It is used to process a collection of data, all of which is
of the same type such as list of test scores, a list of temperatures, list of
names etc.

Syntax:

datatypename arrayname[size]

An array declaration of the above form will define the declared size
number of index variables namely arrayname[0],arrayname[1],…..
arrayname[size –1]. Each index variable is a variable of type
datatypename. These index variables are also known as subscripted
variables or elements. The number in the square bracket is called as
index number or subscript. Indexes are numbered starting with zero.
The number of index variables in an array is known as the size of the
array. The data type of the array is called the base type of the array.

e.g.: int score[100];

double temp[50];

score is an integer array consisting of 100 elements starting from
score[0] to score[99]. As it is an integer array, integer type of data can
be stored in it.

Initializing The Arrays: An array variable can be initialized like any
other variable. When initializing an array, the values of various index
variables are enclosed in braces and separated with commas. All the
values in the list should be of the base type of the array. This list is
called an initialized list.

e.g.: int score[3]={5,10,50};

In the above example, it is array called score with three elements where
score[0]=5, score[1]=10, score[2]=50. If a fewer values than the size of
the array are declared, those values will be used to initialize the first few
index variables and remaining will be initialized to zero of array base
type.

77..11 IInnttrroodduuccttiioonn TToo AArrrraayyss

Base type name Size of array

e.g.: int score[5]={5,10,50};
Here score[3] and score[4] are initialized to zeros.

If an array is initialized when it is declared the size of the array can be
omitted. The array will be automatically declared to have the minimum
size needed for the initialized variables. C++ will create the array with
sufficient size to accommodate the entire initialized list.

e.g.: int score[] = { 5,10,15};

Here, the size of the array is not given. But, depending upon the
number of arguments present in the array during initialization, the array
is declared to be of size 3 automatically.

Write a program to read five scores and show how much each
score differs from the highest score.

#include<iostream.h>
#include<conio.h>
int a[20];//declaration of an array
int main()
{
int i,size, max=-20;//Take max as a small value
//clrscr();
cout<<"enter size of array:";
cin>>size;
cout<< " enter "<<size<<" scores";
for(i=0;i<size;i++)
cin>>a[i];
for(i=0;i<size;i++)
if (a[i]>max)
max=a[i];
cout<<"the difference from max marks:";
for(i=0;i<size;i++)
cout<<"a["<<i<<"]="<<a[i]<<"\t"
<<"Difference:"<<max-a[i]<<"\n";
 getch();
return 0;
}

Output:

enter size of array:5
 enter 5 scores
10
20

30
40
50
the difference from max marks:
a[0]=10 Difference:40
a[1]=20 Difference:30
a[2]=30 Difference:20
a[3]=40 Difference:10
a[4]=50 Difference:0

In this section we will study how array elements are sent as arguments
to the functions as well as how an entire array is passed as an
argument to the function.

An indexed variable can be an argument to a function in exactly the
same way that any variable can be argument.
eg: int i,n,a[10];

The variables of an array can be passed into a function as an individual
data item.

Here is a sample program:

// Program to pass array element as an argument to the function

#include<iostream.h>
int diff(int,int);
int main()
{
int a[5],i;
int max=-20;
for(i=0; i<5;i++)
{
cout<<"enter score of each student in one subject:";
cin>>a[i];
}
for(i=0; i<5;i++)

7.2 Arrays In Functions

7.2.1 Indexed Variables As Function Arguments

if (a[i]>max)
max=a[i];
cout<<"The maximum score is:"<<max<<"\n";
cout<<" The scores and their difference from the
maximum score:\n";
int d;
for(i=0;i<5;i++)
{
d=diff(a[i],max);
cout<<a[i]<<"\t"<<d<<”\n”;
}
return 0;
}
int diff (int x, int m)
{
return(m-x);
}

output:
enter score of each student in one subject:10
enter score of each student in one subject:20
enter score of each student in one subject:30
enter score of each student in one subject:60
enter score of each student in one subject:50
The maximum score is:60
 The scores and their difference from the maximum
score:

10 50
20 40
30 30
60 10
50 10

Write a program to add five to each employees allowed no.of
vacations.

#include<iostream.h>
int adjustdays(int old_days);
void main()
{
int i,vacation[5],emp;
cout<<"enter no of employees:\n";
cin>>emp;
cout<<"Enter leave details for "<<emp<<" employees";

for(i=0;i<emp;i++)
{
cin>>vacation[i];
vacation[i]=adjustdays(vacation[i]);
}
cout<<"vacations after updation:\n";
for(i=0;i<emp;i++)
{
cout<<"employee:"<<i+1<<"vacation details "<<
vacation[i]<<"days \n";
}
}
int adjustdays(int olddays)
{
return(olddays+5);
}

output:

enter no of employees:
3
Enter leave details for 3 employees
2
4
1
vacations after updation:
employee:1 vacation details 7days
employee:2 vacation details 9days
employee:3 vacation details 6days

An argument to a function may be an entire array, but an argument for
the entire array is neither a call by value nor a call by reference
argument. It is a new kind of argument known as array argument. When
an array argument is plugged in for an array parameter, all that is
passed to the function is the address in memory of first index variable of
the array argument (i.e., one indexed by 0).
The array argument does not tell the function the size of the array.
Therefore when an array parameter is passed to a function, normally
another formal parameter of type int that gives the size of the array
should be present.

77..22..22 PPaassssiinngg EEnnttiirree AArrrraayyss AAss FFuunnccttiioonn AArrgguummeennttss

An array argument is like a call by reference argument. If the function
body changes the array parameter, when the function is called, these
changes are actually made to the array arguments. Thus, the function
can change the values of an array argument.

Syntax of function prototype passing an array parameter:

Returntype functionname(basetype arrayname[]…);

e.g.: void sumarray (double & sum,double a[],int size);

Write a program to read an array and find the sum of elements in
an array.

#include<iostream.h>
void read(int a[], int &size);
int sum(int a[], int&size);
void display (int ,int);
void main()
{
int a[20],num,s;
read(a,num);
s=sum(a,num);
display(s,num);
}
void read (int a[],int &size)
{
cout<<"enter size of an array:";
cin >> size;
cout<<"Enter the elements:";
for(int i=0;i<size;i++)
cin>>a[i];
return;
}
int sum (int a[],int &size)
{
int s=0;
for (int i=0;i<size;i++)
s+=a[i];
return s;
}
void display (int s, int size)
{
cout<<"the sum of "<<size<<" elements is"<<s;
}

output:

enter size of an array:5
2
3
4
5
6
the sum of 5elements is20enter size of an array:5
Enter the elements:1
2
3
4
5
the sum of 5 elements is15

Write a program to search a number using linear search technique.

#include<iostream.h>
enum bool{false,true};
int search(int const arr[],int,int);
void read (int a[],int size);
int main()
{
int num,arr[30],result,target;
cout<<"enter size:";
cin >> num;
cout<<”enter elements:”;
read(arr,num);
cout<<"enter element to search";
cin >>target;
result=search(arr,num,target);
if(result==-1)
cout << target<<"not found";
else
cout << target <<" found at"<<(result+1);
return 0;
}
void read (int a[],int num)
{
for(int i=0;i<num;i++)
cin>>a[i];
}
int search(int const arr[],int num,int tar)
{

bool found=false; int i=0;
while((!found)&&(i<num))
{
 if (tar==arr[i])
found=true;
else
i++;
}
if(found==true)
return i;
else
return -1;
}

output:

enter size:4
enter elements:
2
6
4
1
enter element to search4
4 found at3

Program to sort the given integers using selection sorting
technique.

#include<iostream.h>
void read (int a[],int &size);
void display (int a[],int &size);
void swap(int& v1,int& v2);
void main()
{
int arr[20],numb;
int minindex,min;
read(arr,numb);
cout<<" Array before sorting:\n";
display(arr,numb);
int i;
for(i=0;i<numb-1;i++)
{
min=arr[i];
minindex=i;

for (int j=i+1;j<numb;j++)
if(arr[j]<min)
{
min=arr[i];
minindex=j;
}
swap(arr[i],arr[minindex]);
}
cout<<"\nArray after sorting:\n";
display (arr,numb);
}
void read (int a[],int &size)
{
cout<<"enter size of an array:";
cin >> size;
for(int i=0;i<size;i++)
cin>>a[i];
return;
}
void swap(int& v1,int& v2)
{
int temp;
temp = v1;
v1 = v2;
v2 = temp;
}
void display (int a[],int &size)
{
for(int i=0;i<size;i++)
cout<<a[i]<<"\n";
return;
}

output:
enter size of an array:4
5
3
6
2
 Array before sorting:
5
3
6
2
Array after sorting:

2
3
5
6

We can also declare the arrays of classes and classes with arrays as
member variables.

Arrays of classes: The base type of an array can be a class. We can
declare an array of variable of that class type then each array element
will be an object of the class. The syntax for declaring an array of object
is

Syntax: Classname arrayname[size];
e.g: student s1[10];

Program to illustrate the arrays of objects

#include <iostream.h>
class employee
 {

char name[30];
float age;

 public:
 void getdata(void);
 void putdata(void);
 };
 void employee::getdata(void)

{
cout<<”Enter name”;
cin>>name;
cout<<”Enter age”;
cin>>age;
}
void employee::putdata(void)
{
cout<<”Name: ”<<name<<”\n”;
cout<<”Age: “<<age<<”\n”;
}
const int size = 2;

77..33 AArrrraayyss AAnndd CCllaasssseess

int main()
{

 employee manager[size];//Array of managers
 int i;

 for (i = 0; i < size; i++)
 {
 cout<<”\nDetails of manager”<<i+1<<”\n”;
 manager[i].getdata();
 }
 cout<<”\n”;
 for (i = 0; i < size; i++)
 {
 cout<<”\nManager”<<i+1<<”\n”;
 manager[i].putdata();

}
 return 0;
}

Output:
 Details of Manager1

Enter name:harish
Enter age:40

Details of Manager1
Enter name:girish
Enter age:42

Manager1
Name :harish
Age:40

Manager2
Name :girish
Age:42

Array as class members: Arrays can be declared as members of a
class.They can be of any data type. The arrays within the class can be
private, public or protected. Then every object of that class will contain a
copy of array declared in the class.

 #include<iostream.h>

class student
{

char name[20];
int rno;
int marks[3];
public:
void read()
{
cout<<"Enter name:";
cin>>name;
cout<<"Enter rno:";
cin>>rno;
cout<<"Enter 3 marks:";
for(int i = 0;i<3;i++)
{
 cin>>marks[i];
}
}
void display()
{
cout<<"Name: "<<name<<"\n";
cout<<"RNo: "<<rno<<"\n";
for(int i = 0;i<3;i++)
cout<<marks[i]<<"\t";
cout<<"\n";
}
};

 void main()
 {
 student stu;
 stu.read();
 stu.display();
 }

Output:
 Enter name:rama

Enter rno:1
Enter 3 marks:90
80
70
Name: rama
RNo: 1
90 80 70

It is sometimes useful to have more than one index, and this is allowed
in C++ with multidimensional arrays. A multidimensional array is an
array of arrays. An array with more than one subscript or size specifier
is defined as multidimensional array.

Syntax: Base type dataname[size 1][size 2]….[size n];
e.g.: int mat[2][3];

In the above example, mat is a two dimensional matrix with 2 rows and
3 columns. The index variables of the array mat are:
mat[0][0] , mat[0][1], mat[0][2]
mat[1][0] , mat[1][1], mat[1][2]
The number of elements in a multi dimensional array is equal to the
product of all its subscripts. Thus the above matrix has 2X 3 elements.
The indexes start from 0 to size-1.

Two indices or subscripts are used to access two-dimensional arrays,
three for three-dimensional arrays and so on. The values of the
elements of the two dimensional arrays are accessed by specifying the
name of the variable, row and column index of the element.

Consider the array marks[5][4]. It is an integer array. The first subscript
indicates rollno of a student, second subscript indicates marks obtained
by each student in 4 subjects. Thus this array has 5 rows, 4 columns
and with subscripts 0 to 4 & 0 to 3. This array can be initialized as

int marks[5][4]={{20,40,60,70}, {3,50,40,60} ,{4,9,10,16},

{10,,60,20,30} , {50,80,60,90}};

77..44 MMuullttiiddiimmeennssiioonnaall AArrrraayyss

77..44..11 AAcccceessssiinngg MMuullttiiddiimmeennssiioonnaall AArrrraayy EElleemmeennttss

77..44..22 Initialization Of Multidimensional Arrays

The two dimensional arrays are stored in two ways. They are row major
order, column major order.
For e.g. : let us consider a 3x4 integer matrix, mat. The different
indexed variables of the matrix is as follows:

 mat[0][0] mat[0][1] mat[0][2] mat[0][3]

mat[1][0] mat[1][1] mat[1][2] mat[1][3]
mat[2][0] mat[2][1] mat[2][2] mat[2][3]

Let us see how this matrix is stored in the computers memory. The
computer’s memory consists of list of numbered location called bytes.
The variable is represented as a portion of this memory. Thus, a
variable is described by two pieces of information: an address in
memory (giving the location of the first byte for that variable) and the
type of the variable. The location of various array-indexed variables are
always placed next to one another in memory. When the array is
declared, the computer reserves enough memory to hold the variables
of the array, depending on the data type. The computer remembers the
address of the first variable mat[0][0].

Let us consider the row major order. There are four columns the starting
address of k th row will be

Base + k th row x no. of columns x size of the data type

Let the first element of the array is stored at the address location 200.
For an element a[2][0] it is stored that

200+2*4*2
200+16=216

To get the full address of an array variable we use

base+(rowindex X total no.of columns) X size of the datatype) +
columnindex* size of data type.

Similarly in column major order the storage of a[I][j] is given as

Base + (columnindex X total no of rows) * size of datatype)+
rowindex X size of datatype

77..44..33 Storage of two dimensional arrays

When a multidimensional array parameter is given in a function heading
or prototype, the size of the first dimension is not given, but the
remaining dimension sizes must be given in square brackets. Since the
first dimension size is not given, an additional parameter of type int,
which gives the size of the first dimension is needed. Here is an
example of a function prototype with a two dimensional array
parameter:

//Program to read and display the quiz scores of given students
void readarray(int p[][100], int sizedimension);

#include <iostream.h>
#include <iomanip.h>
const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;
void compute_st_ave(const int grade[][NUMBER_QUIZZES], double
st_ave[]);
void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double
quiz_ave[]);
void display(const int grade[][NUMBER_QUIZZES],
 const double st_ave[], const double quiz_ave[]);

int main()
{
 int grade[NUMBER_STUDENTS][NUMBER_QUIZZES];
 double st_ave[NUMBER_STUDENTS];
 double quiz_ave[NUMBER_QUIZZES];

 grade[0][0] = 10; grade[0][1] = 10; grade[0][2] = 10;
 grade[1][0] = 2; grade[1][1] = 0; grade[1][2] = 1;
 grade[2][0] = 8; grade[2][1] = 6; grade[2][2] = 9;
 grade[3][0] = 8; grade[3][1] = 4; grade[3][2] = 10;

 compute_st_ave(grade, st_ave);
 compute_quiz_ave(grade, quiz_ave);
 display(grade, st_ave, quiz_ave);
 return 0;
}

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double
st_ave[])

77..44..44 PPaassssiinngg MMuullttiiddiimmeennssiioonnaall AArrrraayyss IInnttoo FFuunnccttiioonnss

{
 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
 {//Process one st_num:
 double sum = 0;
 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
 sum = sum + grade[st_num-1][quiz_num-1];
 //sum contains the sum of the quiz scores for student numberst_num.
 st_ave[st_num-1] = sum/NUMBER_QUIZZES;
 //Average for student st_num is the value of st_ave[st_num-1]
 }
}
void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double
quiz_ave[])
{
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
 {//Process one quiz (for all students):
 double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
 sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of all student scores on quiz number quiz _
num.
 quiz_ave[quiz_num-1] = sum/NUMBER_STUDENTS;
 //Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]
 }
}

//Uses iostream and iomanip:
void display(const int grade[][NUMBER_QUIZZES],
 const double st_ave[], const double quiz_ave[])
{
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);

 cout << setw(10) << "Student"
 << setw(5) << "Ave"
 << setw(15) << "Quizzes\n";
 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
 {//Display for one st_num:
 cout << setw(10) << st_num
 << setw(5) << st_ave[st_num-1] << " ";
 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES;
quiz_num++)
 cout << setw(5) << grade[st_num-1][quiz_num-1];
 cout << endl;

 }
 cout << "Quiz averages = ";
 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES;
quiz_num++)
 cout << setw(5) << quiz_ave[quiz_num-1];
 cout << endl;
}

Output:
 Student Ave Quizzes
 1 10.0 10 10 10
 2 1.0 2 0 1
 3 7.7 8 6 9
 4 7.3 8 4 10
Quiz averages = 7.0 5.0 7.5

A string is an array of characters terminated by ‘\0’ (null character).

There is already a predefined string class in the Standard Library,

whose members are declared in the <string> header. To distinguish the

strings from the string class, the earlier strings are referred as cstrings.

However, the cstring places a special character ‘\0’ immediately after

the last character of the string. The declaration of cstring variable is

similar to the character array variable.

 Syntax: char cstringname[maxsize+1];
 e.g.: char name [15];

The “+1” allows space for null character, which terminates any cstring
stored in array. The cstring variables can be initialized when it is
declared.
 e.g.: char str[]=”hello”;
 char str1[20]=”hello”;
The above statement initializes the cstring variables. The first statement
declares a cstring “str” as a character array of size 6. In the second
initialization str, is an array of size 20 and places or stores the value
“hello” from 0 to 5th index variable including null character (‘\0’).

77..55 SSttrriinnggss

As a cstring is an array, it has index variables. These variables are
used like those of any other array.
 Ex: - str[]=”hello”;
 This is same as
 str[0]=’h’;

 str[1]=’e’;
 str[2]=’l’;

 str[3]=’l’;
 str[4]=’o’;
 str[5]=’\0’;

The index variable of the cstring can be manipulated in all possible
ways but the null character should be present at the end of the stream.

Write a program to read a string of characters and display it by
adding ‘2’ to each character.

#include<iostream.h>
void main ()
 {
 char s;
 int n;
 cout<<"enter how many characters:";
 cin>>n;
 int i=1;
 while(i<=n)
 {
 cout<<"enter character:";
 cin>>s;
 if(s=='y'||s=='z')
 {
 cout<<char (s-24)<<endl;
 }
 else
 cout<<char (s+2)<<endl;
 i++;
 }

 }
output:

enter how many characters:3

7.5.1 IInnddeexx VVaarriiaabbllee OOff ccssttrriinnggss

enter character:e
g
enter character:t
v
enter character:z
b

Reading a cstring: The value of a cstring variable can read using “cin”
with the extraction operator. The extraction operator reads the input
stream into the cstream variable until the first blank in the input is
accessed.

 e.g.: - char name [20];
 cin>>name;
 In the above statement if we give “JKC college” as input it reads
only JKC, as a blank is encountered.

Reading input including blank space: A member function getline can
be used to read a line of input with blank spaces and place the string of
characters into a string variable.

Syntax: Inputstreamobject. getline (cstring var,size,delimiting sy)
 e.g.:- cin.getline (name, 20,’*’);
The string terminates when ‘*’ is encountered.

String output: A string output statement sends the character until it
finds the null character. It will not print the character after the null
character if there are such characters. If the output statement does not
find the null character, it continues to insert the characters into the
output stream giving unpredictable output.

e.g.:
 cout<<name;

The predefined cstring functions are found in <string.h> or <cstring>
library file.

7.5.2 OOppeerraattiioonn OOnn SSttrriinnggss

 77..55..33 ccssttrriinngg PPrreeddeeffiinneedd FFuunnccttiioonnss

 Length of a string:The length of a string can be found using strlen().

 Syntax: strlen(string);

It returns an integer equal to the length of the source string. It dose not
count the null character.

e.g.: y=strlen(“hello”);

Copying a string: One cstring variable can be copied into another
cstring variable using strcpy() function.
 Syntax:
 Strcpy (target string,source string);

 e.g.: char x[]=”hello”;
 char y[];
 Strcpy(y,x);

It copies the source string values into the target string. This function
does not check the size of target string variable, if it is large enough to
hold the value of source string.

Note: A cstring variable cannot be used with assignment operators.

 Comparing cstrings:
 Two strings can be compared using strcmp() function .

 Syntax: strcmp(cstring1,cstring2);

This function returns 0, if string1 and string2 are same. It returns a
value less than 0 if string1 is less than string2 and greater than 1, if
string1 is greater than string2. The strings are compared in
lexicographic ordering, where (a<b<……..<z).

eg: char name1[10],name2[10];
 cin.getline(name1,10);cin.getline(name2,10);
 X=strcmp(name1,name2);

Concatenating two strings: Two strings can be concatenated using
strcat function.

 Syntax:
 Stract(targetstring,src_string);

It is to form by a longer cstring by placing the two shorter cs trings end-
to-end. The first argument must be a cstring variable. The second
argument can be anything that evaluates to a cstring value, such as
quoted string. The result is placed in the cstring variable that is the first
argument.
 e.g.:

 char stringvar[20] =”The rain ”;
 strcat(stringvar,”in spain”);

This code will change the value of stringvar to “The rain in Spain” does
not check to see that target stringvar is large enough to hold the result
of the concatenation.

A cstring variable is an array, so a cstring parameter to a function is
simply an array parameter. The size of the cstring variable should be
included, whenever a function changes the value of a string parameter.
The null character is used to detect the end of the string value that is
stored in the cstring variable.

In C++ an array of cstrings is represented as a two dimensional array
of characters. For example, the following declares an array called
name, which can hold a list of five names, with at most 19 characters
with one indexed variable holding ‘\0’ (null character).

 char name [5][20];

An array of cstrings can be manipulated by using both indexes
simultaneously, but it is nice to manipulate only one index at a time. A
list of cstrings can be manipulated by a loop that steps through values
of first index and treats each indexed variable – such as name[0],
name[1], name[2] and so forth- as a single cstring variable that can be
manipulated by some cstring function.

77..55..44 DDeeffiinniinngg ccssttrriinngg FFuunnccttiioonnss

77..55..55 AArrrraayy OOff SSttrriinnggss

//Program to pass cstrings into functions

#include<iostream.h>
#include<string.h>
void read(char x[][10],int y);
void write(char x[][10],int y);
void main()
{
char s[5][10];
read(s,5);
write(s,5);
}
void read(char x[][10],int y)
{
for(int i = 0;i<y;i++)
cin.getline(x[i],10);

}
void write(char x[][10],int y)
{
for(int i = 0;i<y;i++)
cout<<x[i]<<”\n”;
}

output:
hello
hai
bye bye
see you
good day
hello
ha
ibye bye
see you
good day

//Program to sort a given array of strings

#include<iostream.h>
#include<string.h>

void read(char x[][10],int y)
{
for(int i = 0;i<y;i++)
cin.getline(x[i],10);
}
void write(char x[][10],int y)

{
for(int i = 0;i<y;i++)
cout<<x[i]<<"\n";
}
void sort(char x[][10],int y)
{
int i,j;
for(i = 0;i<y-1;i++)
{
for(j=0;j<(y-1-i);j++)
{
if (strcmp(x[j],x[j+1]) >0)
{
char t[10];
strcpy(t,x[j]);
strcpy(x[j],x[j+1]);
strcpy(x[j+1],t);
}
}
}
}
void main()
{
int x=3;
char arr[5][10];
cout<<"Enter the no of strings;";
read(arr,x);
sort(arr,x);
cout<<”Strings after sorting;\n”;
write(arr,x);
}

output:

Enter the 3 strings:rama
krishna
govinda

 Strings after sorting:
govinda
krishna
rama

//Program to overload string operations

#include<iostream.h>
#include<string.h>
class string
{
char str[40];
public:
string()
{
strcpy(str,'\0');
}
string(char x[])
{
strcpy(str,x);
}

void operator=(string s)
{

strcpy(str,s.str);
}
int operator ==(string s)
{
 if((strcmp(str,s.str))!= 0)
 return 0;
 else
 return 1;
}
int operator <(string s)
{
if((strcmp(str,s.str))< 0)
 return 1;
 else
 return 0;
 }
friend ostream& operator<<(ostream& out,string s);
friend istream& operator>>(istream& in, string &s);
friend string operator+(string ss1,string ss2);
};
string operator+(string ss1,string ss2)
{
strcat(ss1.str,ss2.str);
return ss1;
}
ostream& operator<<(ostream& out,string s)
{

out<<s.str;
return out;
}
istream& operator>>(istream& in,string &s)
{
in>>s.str;
return in;
}

void main()
{
string s1,s2("Hello"),s3,s4;
cout<<"Enter two strings:";
cin>>s3>>s4;
s1 = s2+s3+s4;
cout<<"s1 after concatenating s2,s3,s4:"<<s1<<endl;
cout<<"s2"<<s2<<endl;
if (s3 == s4)
cout<<"s3 and s4 r equal\n";
else
cout<<"s3 and s4 are different\n";
if(s3<s4)
cout<<s3<<" is less than "<<s4<<endl;
}

output:

s1 after concatinating s2,s3 and s4:Helloramakrishna

s2:Hello

s3:rama

s4:krishna

s3 and s4 are different

C++ provides a simple, safe alternative to using chars to handle strings.
The C++ string class, part of the std namespace, allows to manipulate
Strings safely.
Declaring a string is easy:
using namespace std;
string my_string;

77..66 CC++++ SSttaannddaarrdd SSttrriinngg CCllaassss

or
std::string my_string;

An initial value for the string can be specified in a constructor:
using namespace std;
string my_string("starting value");

String I/O is easy, as strings are supported by cin.
cin>>my_string;

To read an entire line at a time, the getline function can be used and
passed in an input stream object (such as cin, to read from standard
input, or a stream associated with a file, to read from a file), the string,
and a character on which to terminate input. The following code reads a
line from standard input (e.g., the keyboard) until a new line is entered.

using namespace std;
getline(cin, my_string, '\n');

Strings can also be assigned to each other or appended together using
the + operator:

string my_string1 = "a string";
string my_string2 = " is this";
string my_string3 = my_string1 + my_string2;

// Will ouput "a string is this"
cout>>my_string3>>endl;
Naturally, the += operator is also defined

String Comparisons: One of the most confusing parts of using char*s
as strings is that comparisons are tricky, requiring a special comparison
function, and using tests such as == or < don't mean what you'd expect.
Fortunately, for C++ strings, all of the typical relational operators work
as expected to compare either C++ strings or a C++ string and either a
C string or a static string (i.e., "one in quotes").

For instance, the following code does exactly what you would expect,
namely, it determines whether an input string is equal to a fixed string:

string passwd;
getline(cin, passwd, '\n');
if(passwd == "xyzzy")
{
 cout<<"Access allowed"; }

String Length and Accessing Individual Elements: To take the
length of a string, you can use either the length or size function, which
are members of the string class, and which return the number of
characters in a string:

string my_string1 = "ten chars.";
int len = my_string1.length(); // or .size();
Strings, like cstrings can be indexed numerically.

For instance, you could iterate over all of the characters in a string
indexing them by number, as though the string were an array.

Note that the use of the length() or size() function is important here
because C++ strings are not guaranteed to be null-terminated (by a '\0').
(In fact, you should be able to store bytes with a value of 0 inside of a
C++ string with no adverse effects. In a cstring, this would terminate the
string!)

int i;
for(i = 0; i < my_string.length(); i++)
{
 cout<<my_string[i];
}

Incidentally, C++ string iterators are easily invalidated by operations that
change the string, so be wary of using them after calling any string
function that may modify the string.

Searching and Sub strings: The string class supports simple
searching and sub string retrieval using the functions find(), rfind(), and
substr(). The find member function takes a string and a position and
begins searching the string from the given position for the first
occurrence of the given string. It returns the position of the first
occurrence of the string, or a special value, string :: npos, that indicates
that it did not find the sub string.

int find(string pattern, int position);

This sample code searches for every instance of the string "cat" in a
given string and counts the total number of instances:

string input;
int i = 0;
int cat_appearances = 0;

getline(cin, input, '\n');

for(i = input.find("cat", 0); i != string::npos; i = input.find("cat",
i))
{
 cat_appearances++;
 i++; // Move past the last discovered instance to avoid
finding same
 // string
}
cout<<cat_appearances;

Similarly, it would be possible to use rfind in almost the exact same
way, except that searching would begin at the very end of the string,
rather than the beginning.

On the other hand, the substr function can be used to create a new
string consisting only of the slice of the string beginning at a given
position and of a particular length:

// sample prototype
string substr(int position, int length);
For instance, to extract the first ten characters of a string, you might
use:
string my_string = "abcdefghijklmnop";
string first_ten_of_alphabet = my_string.substr(0, 10);
cout<<The first ten letters of the alphabet are "
 <<first_ten_of_alphabet;

Typical calls to members of the Standard Class string:

Members Remarks
Constructors

string str; Default constructor creates empty string

 objects.

string str(“string”); Creates a string object with data “string”.

string str(“aString”); Creates a string object str that is a copy of a

 string, which is an object of the class string.

Elements access:

str[I] Read/write access to character at index i.
str.substr(position,
 length) Returns sub string of calling object starting at
 position for length characters (read-only
 access).

str.c_str() Returns read-only access to the cstring of data
 in string str.

str.at(i) Returns read/write reference to character in

str at index i.

Assignment/modifiers:

 str1-str2; Allocates space and initializes it to str2’s
data, release memory allocated for str1,sets
str1’s size to str2.

str1 +=str2 Character data of str2 is concatenated to

the end of str1;the size is set appropriately.
str.empty() Returns true if str is an empty string, false if

it is not empty.

str1+str2 Returns a string that has str2’s data
concatenated onto the end of str1’s
data.The size is set appropriately.

str.insert(pos, str2) Inserts str2 into str beginning at position pos.

str.remove(pos, len) Removes sub string of len, starting at

position pos.

Comparisons:

str1==str2 Compare for equality or inequality ;returns a
str1!=str2 Boolean value.

str1<str2
str1>str2 All are lexicographical comparisons
str1<=str2
str1>=str2

str.find(str1) Returns index of the first occurrence of str1 in str.
str.find(str1,pos) Returns index of the first occurrence of string

str1 in str; the search starts at position pos.

str.find_first_of(str1,pos) Finds first instance of any character in str1
 in str, starting the search at position.

Str.find_first_not_of(str1,pos) Finds first instance of any character not in
str1, in str, starting search at position pos.

 We have studied the definition of arrays, initializing and passing

arrays into functions.
 We have also covered the details about the array of classes and

arrays as members of class.
 The initialization and accessing of multidimensional arrays, passing

the multidimensional arrays into functions are covered in detail.
 The details regarding the cstrings, operations on cstrings,

predefined cstring functions, arrays of strings are covered.
 C++ Standard string class and typical calls to members of the

standard class string are covered.

Array: A collection of data elements arranged to be indexed in one or
more dimensions. They are stored in contiguous memory.

Cstring: Array of characters that end with ‘\0’.

Multidimensional Arrays: Arrays with 2 or more dimensions .

7.7 Summary

7.8 Technical Terms

1. What are arrays? Explain them in detail.
2. What are array of objects? How are they defined in C++?
3. What are multidimensional arrays? Explain them.

4. What is a cstring? How is it different from character array?
5. Explain some predefined string functions in C++.
6. Explain the passing of arrays into functions.
7. Explain the Standard Class string.

Object-oriented programming with C++,

by E. Bala Gurusamy.
Problem solving with C++

by Walter Savitch
Mastering C++

by K.R.Venugopal, RajkumarBuyya,
T.RaviShankar

AUTHOR

M. NIRUPAMA BHAT, MCA., M.Phil.,

 Lecturer,
Dept. Of Computer Science,

 JKC College,
GUNTUR.

7.9 Model Questions

7.10 References

